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In light of the evidence that charge order coexists with d-wave superconductivity in the underdoped cuprate
superconductors, we investigate the manner in which such charge order will influence the quasiparticle exci-
tations of the system and, in particular, the low-temperature transport of heat by those quasiparticles. We
consider a d-wave superconductor in which the superconductivity coexists with charge density wave order of
wave vector �� /a ,0�. While the nodes of the quasiparticle energy spectrum survive the onset of charge order,
there exists a critical value of the charge density wave order parameter beyond which the quasiparticle spec-
trum becomes fully gapped. We perform a linear response Kubo formula calculation of thermal conductivity in
the low temperature �universal� limit. Results reveal the dependence of thermal transport on increasing charge
order up to the critical value at which the quasiparticle spectrum becomes fully gapped and thermal conduc-
tivity vanishes. In addition to numerical results, closed-form expressions are obtained in the clean limit for the
special case of isotropic Dirac nodes. Signatures of the influence of charge order on low-temperature thermal
transport are identified.
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I. INTRODUCTION

The low energy quasiparticle excitations of the d-wave
superconducting phase of the high-Tc cuprate superconduct-
ors are massless anisotropic Dirac fermions.1 These Dirac
quasiparticles are easily excited in the vicinity of the four
nodes, the four points on the two-dimensional Fermi surface
where the superconducting order parameter vanishes. The
dominant carriers of heat at low temperature, quasiparticles
are efficiently probed via low temperature thermal conduc-
tivity measurements, which have been performed extensively
over the past decade. Theory2–8 has shown that the massless
Dirac energy spectrum yields a low temperature limit where
thermal conductivity is remarkably independent of disorder
for small impurity density. In this limit, known as the uni-
versal limit, thermal conductivity per CuO2 plane depends
only on fundamental constants and the ratio of the Fermi
velocity, vF, to the k-space slope of the superconducting or-
der parameter at the nodal points, v�. Experiments9–18 have
demonstrated this disorder independence and used this result
to extract the anisotropy ratio, ��vF /v�, from low-
temperature thermal transport data.

Over the past few years, there has been significant effort
to grow and measure high quality cuprate samples in the
underdoped regime of the superconducting phase, as well as
the pseudogap phase that results from underdoping even fur-
ther. Several experimental groups have used high-resolution
scanning tunneling microscopy19–30 to examine the electronic
states of the underdoped cuprates at the atomic scale. These
experiments, among others,31 have provided evidence that
charge order coexists with d-wave superconductivity �dSC�
in these materials. Furthermore, it has been shown
theoretically32–34 that coexisting charge order can signifi-
cantly affect the quasiparticle spectrum of the supercon-
ductor, leading the system to become fully gapped for charge
order of sufficient magnitude. If the quasiparticles are fully

gapped �no nodes�, the dominant carriers of heat at low tem-
perature are frozen out, which should have a dramatic effect
on the universal-limit thermal conductivity. Gusynin and
Miransky35 considered the effect of opening up a gap in the
energy spectrum by explicitly adding a mass term to the
Hamiltonian, and they showed that the zero-temperature
thermal conductivity is thereby suppressed. In what follows,
we add a charge order term to the Hamiltonian, show how
the quasiparticle energy spectrum becomes fully gapped for
sufficient charge order, and calculate the resulting zero-
temperature thermal conductivity as a function of charge or-
der, both before and after the nodes vanish.

We consider a particularly simple form of charge order, a
conventional s-wave charge density wave �CDW� with a
k-independent order parameter and a wave vector Q
= �� /a ,0� that doubles the unit cell. While the charge order
in the underdoped cuprates may be of a more complex type,
this simple model provides a place for us to start studying,
phenomenologically, the effect of charge order on thermal
transport in a d-wave superconductor. Furthermore, since the
experimentally observed22 CDW has a wave vector close to
�� /2a ,0�, it will generically have a second harmonic near
�� /a ,0�. This harmonic can couple efficiently to the nodal
quasiparticles because its wave vector nearly spans the sepa-
ration between the nodes.36 The calculations presented in this
paper can then be viewed as applying to this second har-
monic.

While the charge order in the cuprates may turn on with
underdoping, we simply add a CDW term to the dSC Hamil-
tonian and turn on the charge order by hand, by increasing
the magnitude of the CDW order parameter. We then calcu-
late the universal limit thermal conductivity of the combined
system, evaluating the effect of coexisting charge order on
thermal transport. Our goal is to identify signatures of the
onset of charge order which may be observed with underdop-
ing in low-temperature thermal conductivity measurements
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of the underdoped cuprates. Evidence of the breakdown of
universal thermal conductivity at low doping, possibly due to
the onset of charge order, has already been seen
experimentally,37–42 and our results might therefore shed
light on these studies.

We begin in Sec. II by writing down the combined Hamil-
tonian, calculating the resulting energy spectrum, and dis-
cussing the charge-order-induced transition whereby the
spectrum can become fully gapped. In Sec. III, we calculate
the Green’s function and thermal current operator, define our
model of disorder, and use a diagrammatic Kubo formula
approach to obtain an integral form for the thermal conduc-
tivity tensor. For the special case of a clean system �no dis-
order� with isotropic nodes �vF=v�� the remaining k-space
integration can be performed analytically. This case is con-
sidered in Sec. IV where a closed-form solution is obtained
for the thermal conductivity tensor as a function of the mag-
nitude of the charge order. The more general case of nonzero
disorder and anisotropic nodes is considered in Sec. V via a
numerical computation, and the effect of disorder and nodal
anisotropy is discussed. Conclusions are presented in
Sec. VI.

II. COEXISTING d SC AND CDW ORDER

A. Hamiltonian

Following Ref. 32, we consider a model Hamiltonian for
a d-wave superconductor with coexisting charge order,

H = H0 + HdSC + HCDW, �1�

H0 = �
k�

�kck�
† ck�, �2�

HdSC = �
k

�k�ck↑
† c−k↓

† + c−k↓ck↑� , �3�

HCDW = �
k�

�ck�
† ck+Q�. �4�

Momenta are summed over the Brillouin zone of a two-
dimensional square lattice of lattice constant a. H0+HdSC is
the mean-field BCS Hamiltonian for electron dispersion �k
and superconducting order parameter �k, which is taken to
have d-wave symmetry �for example, �k=�0�cos kxa
−cos kya� /2�. HCDW denotes a charge density wave of wave
vector Q with CDW order parameter �. While it is possible
to consider density-wave states of nonzero angular
momentum43 by taking � to be complex and k dependent, we
shall focus here on the effect of a conventional s-wave CDW
corresponding to a site-centered charge modulation in the x
direction of wavelength twice the lattice constant. That is, we
take � to be a real, k-independent parameter and set Q
= �� /a ,0�.

The charge density wave has the effect of doubling the
unit cell and therefore halving the effective Brillouin zone, as
shown in Fig. 1. By defining a four-component extended-
Nambu vector,

�k
† = �ck↑

† , c−k↓, ck+Q↑
† , c−k−Q↓ � , �5�

consisting of particle and hole operators at k and k+Q, we
can express the Hamiltonian in a compact 4	4 matrix nota-
tion,

H = �
k

�
�k

†Hk�k, �6�

where

Hk = �
�1 �1 � 0

�1 − �1 0 − �

� 0 �2 �2

0 − � �2 − �2

� , �7�

and subscript 1 denotes k and subscript 2 denotes k+Q. The
prime indicates that the momentum sum is restricted to the
reduced Brillouin zone. Note that the upper-left and lower-
right 2	2 blocks of Hk are simply the Nambu space Hamil-
tonian at k and k+Q respectively. The CDW order param-
eter couples these two sectors.

B. Energy spectrum and nodal collision

The energy spectrum of the fermionic excitations of this
system of coexisting dSC and CDW order is obtained by
solving for the �positive� eigenvalues of Hk. Doing so, we
find that

Ek =
1

2
	��1

2 + �1
2 + �2

2 + �2
2 + 2�2� 
 ���1

2 + �1
2 − �2

2 − �2
2�2

+ 4�2���1 + �2�2 + ��1 − �2�2��1/2
1/2. �8�

For �=0, these solutions reduce to the energy spectra of the
quasiparticle excitations of the d-wave superconductor, Ek

0

and Ek+Q
0 , where Ek

0=��k
2+�k

2. By construction, the quasipar-

kx

ky

Q = (π/a, 0)

FIG. 1. Charge order of wave vector Q= �� /a ,0� doubles the
unit cell and thereby halves the Brillouin zone. With increasing
charge density wave order parameter, �, the nodes of the energy
spectrum, and their images in the second reduced Brillouin zone
�shaded�, approach the reduced Brillouin zone edges �dotted�, col-
liding for �=�c, beyond which the spectrum is fully gapped.
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ticle energies drop to zero at four points in the Brillouin
zone, the intersection of the Fermi surface with the lines kx
= 
ky. These are the nodal points, or nodes, of the d-wave
superconductor. To model the situation in the cuprates, the
nodes are taken to be a distance kF from the origin, inside of
the �
� /2a , 
� /2a� points by a small distance k0 where
k0�� /�2a−kF�kF.

As the charge density wave is turned on, the nodal struc-
ture of the excitation spectrum initially survives, since the
CDW wavevector, Q, is not commensurate with the intern-
odal distance.32,36 With increasing �, the nodes move toward
the reduced Brillouin zone edge along the trajectory sketched
in Fig. 1. Also plotted in this figure is the trajectory of the
image of each node translated by Q into the second reduced
Brillouin zone. At a critical value of the CDW order param-
eter, �=�c, the nodes collide at the reduced Brillouin zone
edge and the energy spectrum becomes fully gapped. For �
��c, the minimum values of the excitation spectra are non-
zero. Hence, the nodes have vanished.

To determine the points in k space at which this nodal
collision occurs, we need only solve for the points at which a
zero of Ek coincides with a reduced Brillouin zone edge. We
define the � for which this occurs to be �c. For example,
node number 1 �located in the upper-right quadrant� will col-
lide somewhere along the reduced zone boundary at kx
=� /2a. Setting E�kx=� /2a ,ky�=0 and noting that both �k
and �k are even functions of kx, we find that the collision
point must satisfy �1=�2=�c and �1=�2=0. Near node num-
ber 1, the latter condition yields kx=ky, so the collision point
is kc= �� /2a ,� /2a�. Equivalent arguments for each of the
four quadrants reveal that the four collision points are lo-
cated at �
� /2a , 
� /2a�. Defining local coordinates k1
and k2 about each of the collision points, as shown in Fig. 2,
we can write

�1 = vF�k0 + k1� �1 = v�k2,

�2 = vF�k0 + k2� �2 = v�k1, �9�

where vF is the Fermi velocity and v� is the slope of the gap
at the node. Note that in writing these linear relations, we
have assumed that k0 is small enough that the spectrum of
the d-wave superconductor is still linear in the vicinity of the
collision points. At the collision points �k1=k2=0�, �1=�2
=vFk0, which requires that �c=vFk0. Switching to scaled co-
ordinates, p1��vFv�k1 and p2��vFv�k2, yields

�1 = �c + ��p1 �1 = p2/�� ,

�2 = �c + ��p2 �2 = p1/�� , �10�

where ��vF /v�. This notation provides a convenient frame-
work with which to proceed with the thermal transport cal-
culation.

III. TRANSPORT CALCULATION

Given the Hamiltonian defined by Eqs. �7� and �10�, we
can calculate the thermal conductivity, and its dependence on
the charge density wave order parameter, via Kubo formula.

A. Green’s function

We begin by computing the Matsubara Green’s function.
In the extended-Nambu basis of Eq. �5�, the bare Green’s
function is a 4	4 matrix obtained through inversion of the
Hamiltonian

G0�k,i
� = �i
 − Hk�−1. �11�

It takes the form

G0�k,
� =
1

Gden
�Ga Gb

Gc Gd

 , �12�

Ga = ��i
�2 − �2
2 − �2

2��i
 + �1�3 + �1�1�

− �2�i
 − �2�3 + �2�1� , �13�

Gb = ��i
��1 + �2� + ��i
�2 + �1�2 − �1�2 − �2��3

+ ��1�2 + �2�1��1 − i
��1 − �2��i�2�� , �14�

Gc = ��i
��1 + �2� + ��i
�2 + �1�2 − �1�2 − �2��3

+ ��1�2 + �2�1��1 + i
��1 − �2��i�2�� , �15�

Gd = ��i
�2 − �1
2 − �1

2��i
 + �2�3 + �2�1�

− �2�i
 − �1�3 + �1�1� , �16�

Gden = ��1
2 + �1

2 + �2 − �i
�2���2
2 + �2

2 + �2 − �i
�2�

− �2���1 + �2�2 + ��1 − �2�2� , �17�

where Gden is a scalar and Ga, Gb, Gc, and Gd are 2	2
matrices expressed in terms of particle-hole-space Pauli ma-
trices, �i.

In the presence of disorder, we must include the impurity
contribution to the self-energy via Dyson’s equation

kx

ky

k1k2k1 k2

k1k2k1 k2

FIG. 2. Local coordinates, k1 and k2, defined about each of the
four nodal collision points, kc= �
� /2a , 
� /2a�. The k1 axes,
perpendicular to the Fermi surface, define the direction of increas-
ing electron dispersion, �k. The k2 axes, parallel to the Fermi sur-
face, define the direction of increasing superconducting order pa-
rameter, �k.
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G−1 = G0−1 − � . �18�

The self-energy, �, is a 4	4 matrix in the extended-Nambu
basis, but for simplicity, we consider here only the scalar
term

� = ��i
�1 �19�

and postpone discussion of the effects of off-diagonal self-
energy terms to a separate publication.44 Then the dressed
Matsubara Green’s function is simply

G�k,i
� = ��i
 − ��i
��1 − Hk�−1 = G0�k,i
 − ��i
�� .

�20�

For our calculation of the zero-temperature thermal conduc-
tivity, we will require only the imaginary part of the zero-
frequency retarded Green’s function, Im GR�k ,
→0�. Con-
tinuing i
→
+ i� and taking the 
→0 limit, the zero-
frequency retarded self-energy is just a negative imaginary
constant, −i�0, and we find that

Im GR�k,
 → 0� =
1

Gden
�Ga� Gb�

Gc� Gd�

 , �21�

Ga� = − �0��0
2 + �2 + �2

2 + �2
2� , �22�

Gb� = ��0���1 + �2� − ��1 − �2��i�2�� , �23�

Gc� = ��0���1 + �2� + ��1 − �2��i�2�� , �24�

Gd� = − �0��0
2 + �2 + �1

2 + �1
2� , �25�

Gden = ��0
2 + �2 + �1

2 + �1
2���0

2 + �2 + �2
2 + �2

2�

− �2���1 + �2�2 + ��1 − �2�2� , �26�

where �0 is the zero-frequency impurity scattering rate �the
impurity-induced broadening of the spectral function�.

B. Current operator

Next we must calculate the quasiparticle current operator
for this system of coexisting d-wave superconductor and
charge order. We note that quasiparticles carry a well-defined
heat and spin. Thus, where a quasiparticle goes, so goes its
heat and spin. Though the quantity we require is the thermal
current, we will proceed by calculating the spin current op-
erator �which is technically simpler� obtaining the thermal
current operator by correspondence.

The spin current operator, js, is obtained via continuity
with the spin density operator, �s,

− � · js = �s =
1

i
��s,H� . �27�

Fourier transforming and taking the zero-wavevector limit
yield a recipe for calculating jq=0

s , which is the operator we
will need for the transport calculation,

q · j0
s = lim

q→0
��q

s ,H� . �28�

Defining and re-expressing the spin density operator in vari-
ous forms, we note that

�q
s � �

k��

S�ck��
† ck�+q� = s�

k�

�
�k�

†
�k�+q

= s�
k�

�
�ck�↑

† ck�+q↑ + c−k�↓c−k�−q↓
† + dk�↑

† dk�+q↑ + d−k�↓d−k�−q↓
† � ,

�29�

where S�= 
s, s=1 /2, dk��ck+Q�, �k is the four-
component extended-Nambu vector defined in Eq. �5�, and
the prime restricts the wave vector sum to the reduced Bril-
louin zone. In the same notation, the Hamiltonian takes the
form

H = �
k

�
�k

†Hk�k = �
k

�
��k�ck↑

† ck↑ − c−k↓c−k↓
† � + �k�ck↑

† c−k↓
†

+ c−k↓ck↑� + �k+Q�dk↑
† dk↑ − d−k↓d−k↓

† � + �k+Q�dk↑
† d−k↓

†

+ d−k↓dk↑� + ��ck↑
† dk↑ − c−k↓d−k↓

† + dk↑
† ck↑ − d−k↓c−k↓

† �� .

�30�

Using fermion anticommutation relations to evaluate the
commutator in Eq. �28�, we find that

j0
s = s�

k

�
�k

†�vFk�3 + v�k�1 v�k�3

v�k�3 vFk+Q�3 + v�k+Q�1

�k+Q,

�31�

where vFk���k /�k, v�k���k /�k, and v�k��� /�k. For the
case we consider, � is k-independent, so v�k is precisely zero
and the spin current operator is block diagonal in the
extended-Nambu basis.

In the vicinity of each of the four collision points �the
regions we will always be considering�, vFk points along the
locally defined k1 direction and v�k points along the locally
defined k2-direction, as shown in Fig. 2. Therefore, shifting
by wave vector Q= �� /a ,0� from k to k+Q flips the sign of
the x component of each velocity while preserving the y
component. That is, the components satisfy vFk+Q

i =�ivFk
i and

v�k+Q
i =�iv�k

i for

�i � �− 1 for i = x

+ 1 for i = y
� , �32�

so we can write

j0
s = s�

k

�
�k

†�vMF + vM���k+Q, �33�

where

vMF � vFk
x M3

xx̂ + vFk
y M3

yŷ , �34�

vM� � v�k
x M1

xx̂ + v�k
y M1

yŷ , �35�
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M3
i � ��3 0

0 �i�3
� M1

i � ��1 0

0 �i�1
� . �36�

Finally, we note that since the same quasiparticles that
carry the spin also carry the heat, the thermal current opera-
tor, j�, will have the same structure as the spin current op-
erator. In the zero-wave-vector, zero-frequency limit that we
will require,

j0
� = lim

q,�→0
�
k


� �
 +
�

2
��k,


† �vMF + vM���k+Q,
+�. �37�

C. Thermal conductivity

Given the Green’s function, thermal current operator, and
coordinate system defined in the previous sections, we can
calculate the thermal conductivity via the Kubo formula45

�J�T�
T

= − lim
�→0

Im �J �
R���

T2�
, �38�

where the retarded current-current correlation function is ob-
tained from the Matsubara function via analytic continuation,

�J �
R��� = �J ��i� → � + i�� . �39�

In what follows, we neglect vertex corrections, calculating
the bare bubble current-current correlation function using the
Matsubara formalism.45 It has been shown previously8 that
vertex corrections are negligible for the d-wave supercon-
ductor case �without charge order� and the contribution of
vertex corrections to the present case will be considered in a
separate paper.44

Evaluating the bare bubble Feynman diagram shown in
Fig. 3 yields

�J ��i�� =
1

�
�
i


�
k

� �i
 +
i�

2
�2

Tr�G�k,i
�vMG�k,i


+ i��vM� , �40�

where vM �vMF+vM� is a vector in coordinate space and a
matrix in extended-Nambu space, the Green’s functions are
dressed with disorder, the 
 sum is over fermionic Matsub-
ara frequencies, the k-sum is restricted to the first reduced
Brillouin zone, the trace is over extended-Nambu space, and
�=1 /kBT. We expand the k-sum from the reduced Brillouin
zone to the full �original� Brillouin zone, which double-

counts and therefore requires division by 2. Since the sum-
mand is sharply peaked in the vicinity of the four nodal
collision points, we then replace the k-sum by four integrals
over local scaled coordinates, p1 and p2, defined �in Sec.
II B� about each of these points,

�
k
�→

1

2�
k

→
1

2�
j=1

4 � d2p

�2��2vFv�

. �41�

Making use of a spectral representation of the matrix Green’s
function

G�p,i
� =� d
1

−
1

�
Im GR�p,
1�

i
 − 
1
. �42�

Equation �40� becomes

�J ��i�� =
1

2�2vFv�
� d2p

�2��2� d
1d
2S�i��Tr

	��
j=1

4

GR��p,
1�vM
�j�GR��p,
2�vM

�j�
 , �43�

where

S�i�� =
1

�
�
i

�i
 +

i�

2
�2 1

i
 − 
1

1

i
 + i� − 
2
�44�

and vM
�j� is the value of vM in the vicinity of collision point j.

�Note that while the spectral representation defined in Eq.
�42� is valid for the case of real � that we are considering, it
would not be valid if �, and therefore Hk, was complex. The
subtleties of this are discussed in detail in the Appendix.�

Computing the Matsubara sum in Eq. �44� via contour
integration �see Refs. 8 and 46 for discussion of technical
points�, continuing i�→�+ i� to obtain the retarded func-
tion, and taking the imaginary part, we find that

SR���� = ��
1 +
�

2
�2

�nF�
1 + �� − nF�
1����
1 + � − 
2� ,

�45�

where nF�x�=1 / �e�x+1� is the Fermi function the double-
prime indicates the imaginary part. Then taking the �→0
limit in Eq. �38� yields an expression for the thermal conduc-
tivity tensor

�J�T�
T

=
− 1

2�2vFv�
� d
�


T
�2�nF

�

� d2p

4�
Tr RJ�p,
� ,

�46�

where

RJ�p,
� = �
j=1

4

GR��p,
1�vM
�j�GR��p,
2�vM

�j� �47�

and taking the T→0 limit yields

k, ω + Ω

k, ω

jκ jκ

FIG. 3. Feynman diagram depicting the bare bubble thermal

current-current correlation function, �J ��i��. The thermal current
operator sits on each vertex and each propagator denotes a Green’s
function dressed with disorder self-energy.
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�J0

T
=

kB
2

6vFv�
� d2p

4�
Tr RJ�p,0� . �48�

Here we have used the fact that, for low T, �
 /T�2

�−�nF /�
� is sharply peaked at 
=0 and

�
−�

�

d
�


T
�2�−

�nF

�

� =

�2kB
2

3
. �49�

Noting that at each collision point, vF and v� point along the
local k1 and k2 directions respectively �as defined in Fig. 2�
and performing the sum over collision points in Eq. �47�, we
find that

Rii�p,0� = 2vF
2GR�M3

i GR�M3
i + 2v�

2 GR�M1
i GR�M1

i

+ 2�ivFv��GR�M3
i GR�M1

i + GR�M1
i GR�M3

i � �50�

for i= 	x ,y
 while

Rxy�p,0� = Ryx�p,0� = 0, �51�

where �i, M3
i , and M1

i are defined in Eqs. �32� and �36�.
Plugging in the Green’s function from Eqs. �21�–�26� and
taking the trace over the 4	4 extended-Nambu space yields

�0
ii

T
=

�00

T
� d2p

4�

N1 + �iN2

D
, �52�

N1 = 2A��A + B + �1
2 + �1

2�2 + �A + B + �2
2 + �2

2�2� , �53�

N2 = 4AB���1 + �2�2 − ��1 − �2�2� , �54�

D = ��A + B + �1
2 + �1

2��A + B + �2
2 + �2

2� − B���1 + �2�2

+ ��1 − �2�2��2, �55�

where

�00

T
�

kB
2

3�
� vF

v�

+
v�

vF
� �56�

is the universal-limit thermal conductivity for a d-wave su-
perconductor �without charge order� and we have defined A
��0

2 �our parameter of disorder� and B��2 �our parameter
of charge order�. Inserting our expressions for the �’s and �’s
from Eq. �10� and integrating over p, we can obtain the
zero-temperature thermal conductivity as a function of �, �0,
and �=vF /v�. We expect these results, calculated in the
zero-temperature limit, to apply within a regime where tem-
perature is small compared to all other energy scales in the
problem. Estimating the extent of this regime, which likely
depends on the details of the disorder6 and charge order,
would require the calculation of nonzero-temperature correc-
tions and is beyond the scope of this paper.

IV. ANALYTICAL RESULTS: CLEAN ISOTROPIC LIMIT

In the clean �A=�0
2→0�, isotropic ��=vF /v�=1� limit,

the integrals in Eq. �52� can be performed analytically, pro-
viding us with a closed-form expression for the thermal con-
ductivity tensor as a function of the charge density wave

order parameter, �. Selecting �c �the value of � at which the
nodes vanish� as our energy unit, and for �=1, Eq. �10�
becomes

�1 = p1 + 1 �1 = p2,

�2 = p2 + 1 �2 = p1. �57�

It is then useful to make a change of variables to

q1 � p1 − p2,

q2 � p1 + p2 + 1 �58�

such that

�1 = �q1 + q2 + 1�/2 �1 = �q2 − q1 − 1�/2,

�2 = �q2 − q1 + 1�/2 �2 = �q1 + q2 − 1�/2. �59�

Note that this change of variables has a Jacobian of 1/2 such
that �d2p→ 1

2�d2q. Therefore,

�0
ii

�00
=� d2q

8�

N1 + �iN2

D
, �60�

N1 = 4A��A + B +
q2 + 1

2
�2

+ q1
2
 , �61�

N2 = 4AB��q2 + 1�2 − q1
2� , �62�

D = �f + A�q2 + 1 + 2B� + A2�2, �63�

where

f =
�q2 − 1�2

4
+ �q2 − B�2. �64�

In the A→0 limit, the numerator vanishes, so contributions
to the integral come only from the vicinity of points in
q-space where the denominator vanishes as well, which re-
quires f =0. It is clear from Eq. �64� that f is only equal to
zero when q=1 and q2=B, the intersection of a unit circle
about the origin and a horizonal line at q2=B.

For B�1, there is no intersection, so the integral is zero.
This is quite physical, since for B�1, ���c and the energy
spectrum is gapped. Thus, in the clean, zero-temperature
limit, there are no quasiparticles to transport heat and the
thermal conductivity is zero.

For B�1, the circle and line intersect at two points, qn

= �
�1−B2 ,B�. These points are precisely the node and
ghost node of the energy spectrum, which will collide when
� reaches �c. For vanishing A, terms in N1, N2, and D that
are higher than first order in A can be safely neglected and
terms first order in A can be replaced by their values at q
=qn. Doing so, we find that

�0
ii

�00
= �1 + �iB

2�8�1 + B�I1, �65�

where
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I1 �� d2q

8�

A

�f + 2A�1 + B��2 �66�

and f is the function of q given in Eq. �64�. Changing vari-
ables to

x1 � q1 − 1 = x cos � ,

x2 � q2 = x sin � , �67�

we see that

f = x4/4 + B2 + x2 + x3 cos � − 2Bx sin �

=
x2

h2 �1 + h2 + 2h�cos � cos �0 − sin � sin �0��

=
x2

h2 �1 + h2 + 2h cos�� + �0�� �68�

where

h �
x

�x4/4 + B2
and tan �0 �

2B

x2 . �69�

Then plugging f into Eq. �66�, shifting �→�−�0+�, and
defining ��2�1+B�h2 /x2, we find that

I1 =
1

8�
�

0

�

dxx�
−�

�

d�
h4

x4

A

�1 + h2 − 2h cos � + A��2

=
1

8��1 + B��0

� dx

x
h2I2 �70�

where

I2 � �
0

�

d�
A�

�1 + h2 + A� − 2h cos ��2 . �71�

This integral over � is standard and easily evaluated via in-
tegration table.47 Doing so yields

I2 = 2�
1 + h2

�1 + h�3D�h − 1,A�� �72�

where

D�u,�� �
�2/2

�u2 + �2�3/2 . �73�

Since � is finite for all x, A� vanishes as A→0. Therefore,
noting that

lim
�→0

D�u,�� = �0 for u � 0

� for u = 0
� �74�

and

�
−�

�

duD�u,�� = 1 �75�

we see that D�u ,�→0� is a representation of the Dirac delta
function. Hence,

I2 =
�

2
��h − 1� �76�

and

I1 =
1

16�1 + B��0

�

dx
x

x4/4 + B2��h − 1� . �77�

Noting that ��h−1�=2��h2−1� �since h�1� and letting u
�x2 /2, this becomes

I1 =
1

8�1 + B��0

� du

u2 + B2�� 2u

u2 + B2 − 1� . �78�

For B�1, the argument of the delta function is never zero,
so I1=0, as expected. For B�1, the argument is zero at two
points, u=u
=1
�1−B2, so after a bit of delta-function
gymnastics, we find that

I1 =
1

16�1 + B�
1

�1 − B2�
0

�

du���u − u−� + ��u − u+��

=
1

8�1 + B�
��1 − B�
�1 − B2

�79�

where ��x� is the Heaviside step function. Finally, plugging
back into Eq. �65�, we obtain a very simple closed-form ex-
pression for the zero-temperature thermal conductivity tensor
in the clean isotropic limit.

�0
xx

�00
= �1 − ��/�c�4���c − �� , �80�

�0
yy

�00
=

1 + ��/�c�4

�1 − ��/�c�4
���c − �� , �81�

�0
xy = �0

yx = 0. �82�

These results are plotted in Fig. 4. For �=0, we recover the
universal-limit thermal conductivity of a d-wave
superconductor8 �see Eq. �56��. And for ���c, as expected,
the thermal conductivity vanishes since the system has be-
come gapped and there are no quasiparticles to transport the
heat. For � between zero and �c, thermal transport in the x
and y directions differ, which makes sense as square symme-
try has been explicitly broken by the charge density wave
oriented in the x direction. Parallel to the CDW wave vector,
thermal conductivity in the x-direction decreases monotoni-
cally with �, vanishing continuously at �c. Perpendicular to
the CDW wave vector, thermal conductivity in the
y-direction increases with �, exhibiting a square-root diver-
gence before vanishing abruptly at �c. This divergence, a
consequence of the clean limit, is replaced by a peak in �0

yy

when nonzero disorder is considered, as will be shown in the
next section.

V. NUMERICAL RESULTS

For the general case of nonzero disorder ��0�0� and/or
anisotropic Dirac nodes ��=vF /v��1�, the p-space integra-
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tion in Eq. �52� is more complicated, but can be computed
numerically. Doing so, we calculated the zero-temperature
thermal conductivity tensor as a function of charge density
wave order parameter, �, our parameter of disorder, �0, and
the anisotropy of the Dirac nodes, �=vF /v�. Results are
plotted in Figs. 5 and 6.

Figure 5 shows �0
xx and �0

yy as functions of � for several
values of �0 and �=1. The clean-limit results calculated in
Sec. IV are included �solid lines� for comparison. Note that
as disorder increases, the transition to zero thermal conduc-
tivity at the nodal collision point ��=�c� gets rounded out,
and the peak in �0

yy just prior to the collision point is dimin-
ished and broadened. Essentially, and not unexpectedly, dis-
order blurs the nodal collision, smoothing out the sharp tran-
sition seen in the clean case.

The �0=0.05�c results are reproduced in Fig. 6, along
with plots of �0

xx and �0
yy versus � for larger values of �. For

constant disorder, increasing � changes the shape of the �0
xx

curve and diminishes and broadens the peak in �0
yy. The ef-

fect of increased nodal anisotropy is similar to, but distinct
from, that of disorder, further smoothing the transition to
zero thermal conductivity that occurs abruptly at �=�c in the
clean, isotropic case.

Note that in the presence of disorder, since the thermal
conductivity does not drop abruptly to zero at �=�c, there
exists a range of � over which the zero-temperature thermal
conductivity is nonzero despite the fact that the energy spec-
trum has become fully gapped.

VI. CONCLUSIONS

The coexistence of d-wave superconductivity with charge
order of sufficient magnitude can have a significant effect on
the energy spectrum of the Bogoliubov quasiparticles and the
transport of heat by those quasiparticles at low temperatures.
In this paper, we have considered a particularly simple form

of charge order, a conventional s-wave charge density wave
of wave vector Q= �� /a ,0�, the magnitude of which is char-
acterized by a real, k-independent order parameter, �. The
charge order halves the Brillouin zone, and as a function of
�, the four nodes of the quasiparticle energy spectrum move
in k space, approaching the reduced Brillouin zone edge.
When � reaches �c, equal to the Fermi velocity times the
k-space distance from the original node location to the
�� /2,� /2� point, the nodes reach the reduced Brillouin zone
edge and collide with their counterparts in the second re-
duced Brillouin zone. Beyond this point, the nodes vanish
and the quasiparticle energy spectrum is fully gapped.

We have used a linear response Kubo formula approach to
calculate the zero temperature limit of the thermal conduc-
tivity tensor for this system. Working within an extended-
Nambu basis �particle, hole, particle shifted by Q, hole
shifted by Q�, we constructed a 4	4 matrix Hamiltonian,
Green’s function, and thermal current operator. We then used
the Matsubara technique to evaluate the bare-bubble thermal
current-current correlator, neglecting vertex corrections and
including disorder in the self-energy via a single broadening
parameter, �0. From this we calculated �xx /T and �yy /T, in

FIG. 4. Calculated zero-temperature thermal conductivity tensor
in the clean ��0→0�, isotropic �vF=v�� limit. We plot �0

xx and �0
yy

as functions of the charge density wave order parameter, �, from
the closed-form expressions in Eqs. �80� and �81�. As � approaches
�c, the value beyond which the quasiparticle spectrum becomes
gapped, �0

xx vanishes continuously while �0
yy diverges before drop-

ping to zero.

FIG. 5. Disorder dependence of calculated zero-temperature
thermal conductivity tensor. We plot �0

xx �upper panel� and �0
yy

�lower panel� as functions of charge density wave order parameter,
�, for several values of the disorder parameter, �0. In all cases, �
=vF /v�=1. Included for comparison is the clean limit result �solid
lines�. Note that disorder smoothes the transition to zero thermal
conductivity that results from the gapping of the energy spectrum at
�=�c. The divergence of �0

yy seen in the clean case is replaced by a
peak that is diminished and broadened with increasing disorder.
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the limit of zero temperature, as a function of �, �0, and the
nodal anisotropy �=vF /v�.

In the clean ��0→0�, isotropic �vF=v�� limit, our calcu-
lations yield a closed-form solution for the thermal conduc-
tivity tensor �plotted in Fig. 4�,

�0
xx

�00
= �1 − ��/�c�4���c − �� , �83�

�0
yy

�00
=

1 + ��/�c�4

�1 − ��/�c�4
���c − �� , �84�

�0
xy = �0

yx = 0, �85�

where

�00

T
�

kB
2

3�
� vF

v�

+
v�

vF
� , �86�

is the zero-temperature thermal conductivity for a d-wave
superconductor with no charge order. As expected, the ther-
mal conductivity takes the pure d-wave superconductor value
for �=0 and drops to zero for ���c, where the quasiparticle

energy spectrum has become fully gapped. For intermediate
values of �, �0

xx and �0
yy differ, as square symmetry has been

broken by the charge density wave. For transport in the di-
rection of the charge density wave vector, �0

xx vanishes con-
tinuously as � approaches �c. By contrast, for transport per-
pendicular to the charge density wave vector, �0

yy diverges
before dropping abruptly to zero at �c. This divergence is a
consequence of the clean limit and is replaced by a finite
peak in the presence of disorder.

For the more complicated case of nonzero disorder ��0
�0� and/or anisotropic nodes �vF�v��, we have obtained
results via a numerical calculation. We find that disorder
smoothes out the transition to zero thermal conductivity
across the nodal collision �see Fig. 5�. The clean-limit diver-
gence in �0

yy just before the transition is replaced by a peak
which broadens and decreases in amplitude with increasing
disorder. The abrupt drop in the clean-limit �0

xx is similarly
broadened. Essentially, the disorder-broadening of the quasi-
particle spectral function averages over what was, in the
clean limit, a sharp transition from gapless to gapped quasi-
particles. We find that increased nodal anisotropy has a simi-
lar effect, amplifying the disorder effect and thereby further
broadening the features in the � dependence of the thermal
conductivity �see Fig. 6�. And the fact that disorder has an
effect indicates that the low-temperature thermal conductiv-
ity is no longer universal �disorder-independent� in the pres-
ence of charge order, which is in line with the results of
recent measurements37–42 of low-temperature thermal trans-
port in the underdoped cuprates, as well as other
calculations.35,48

In these calculations, we have enjoyed the theorist’s
luxury of being able to turn on, by hand, a charge density
wave to coexist with the d-wave superconductivity. The ex-
perimenter does not have direct access to such a knob. How-
ever, in the d-wave superconducting state of the cuprates,
charge order does appear to be enhanced with underdoping.
Hence the features of the �-dependent thermal conductivity
curves calculated herein should serve as signatures for the
underdoping-dependence of thermal conductivity measured
in the underdoped cuprates. Of course, most dramatic would
be the observation of the nodal collision beyond which the
low-temperature thermal conductivity drops to zero. How-
ever, even if the amplitude of charge order is insufficient to
reach the nodal collision, these results should provide insight
to the approach to the transition.

A sequel to this work, exploring the effects of a more
elaborate model of disorder, as well as the contribution of
vertex corrections, is in preparation.44 Future work will also
examine the effect of different types of charge order �beyond
the conventional s-wave case considered here� of different
wave vector �beyond the unit-cell-doubling Q= �� /a ,0� case
considered here� and of multiple wave vectors �such as the
checkerboard charge order observed in some cuprates22,29�.
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FIG. 6. Nodal anisotropy dependence of calculated zero-
temperature thermal conductivity tensor. For fixed disorder ��0

=0.05�c�, we plot �0
xx �upper panel� and �0

yy �lower panel� as func-
tions of charge density wave order parameter, �, for several values
of �=vF /v�. Lines connecting the data points are guides to the eye.
Note that the nodal transition at �=�c is smoothed out by increas-
ing velocity anisotropy in a manner similar to, but distinct from, the
effect of disorder.
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APPENDIX: SUBTLETIES OF THE SPECTRAL
REPRESENTATION

In the calculations described in this paper, we have made
use of the 4	4 extended-Nambu basis of Eq. �5� for the
Hamiltonian and Green’s functions. This choice of basis pro-
vides a compact realization of the Hamiltonian and is quite
convenient in many respects. However, use of a matrix
Green’s function does introduce some subtleties regarding
the spectral representation, and we would like to address
those here.

All of our results could have been obtained by diagonal-
izing the Hamiltonian from the outset and working with the
diagonalized Green’s function,

GD�i
� = U†G�i
�U �A1�

with diagonal matrix elements

�GD�i
��nn =
1

i
 − Ek
�n� − ��n��i
�

�A2�

where the Ek
�n� are the eigenvalues of Hk, the ��n� are the

corresponding self-energies, and the eigenvectors define the
columns of unitary transformation matrix U. In the diagonal
basis, it is quite valid to define a spectral representation for
the Green’s function

GD�i
� =� d
1
AD�
1�
i
 − 
1

�A3�

where

AD�
� �
i

2�
�GD

R�
� − GD
A�
�� = −

1

�
Im GD

R�
� . �A4�

Note that the second equality follows from the fact that the
retarded diagonal Green’s function, GD

R�
��GD�i
→

+ i��, is the complex conjugate of the advanced diagonal
Green’s function, GD

A�
��GD�i
→
− i��, which is clear
from Eq. �A2�.

The non-diagonal matrix Green’s function can therefore
be expressed as

G�i
� = UGD�i
�U† =� d
1

−
1

�
U Im GD

R�
1�U†

i
 − 
1

�A5�

which is not equivalent to the right-hand side of Eq. �42�

� d
1

−
1

�
Im GR�
1�

i
 − 
1
=� d
1

−
1

�
Im�UGD

R�
1�U†�

i
 − 
1

�A6�

unless the diagonalization transformation commutes with
taking the imaginary part. Equivalently, note that it is valid to
define a non-diagonal matrix spectral function, A�
�
�UAD�
�U†, such that

G�i
� =� d
1
A�
1�

i
 − 
1
�A7�

but

A�
� �
i

2�
�GR�
� − GA�
�� �A8�

will not be equal to −Im GR /� �or even have to be real�
unless the non-diagonal retarded Green’s function, GR�
�
�G�i
→
+ i��, is the complex conjugate of the non-
diagonal advanced Green’s function, GA�
��G�i
→

− i��.

For the case of real � that we consider in this paper, Hk
and therefore U are real, so diagonalization does commute
with taking the imaginary part, GR is the complex conjugate
of GA, and Eq. �42� is valid. But this is not generically the
case for complex �.
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